Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards.

نویسندگان

  • Qiao Li
  • Xiao Ming Tao
چکیده

This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are three-dimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance change up to 300% strain in unidirectional tensile test or 150% membrane strain in three-dimensional ball punch test, extraordinary fatigue life of more than 1 000 000 loading cycles at 20% maximum strain, and satisfactory washing capability up to 30 times. To the best of our knowledge, the performance of new FCBs has far exceeded those of previously reported metal-coated elastomeric films or other organic materials in terms of changes in electrical resistance, stretchability, fatigue life and washing capability as well as permeability. Theoretical analysis and numerical simulation illustrate that the structural conversion of knitted fabrics is attributed to the effective mitigation of strain in the conductive metal fibres, hence the outstanding mechanical and electrical properties. Those distinctive features make the FCBs particularly suitable for next-to-skin electronic devices. This paper has further demonstrated the application potential of the knitted FCBs in smart protective apparel for in situ measurement during ballistic impact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three - dimensionally deformable , highly stretchable , permeable , durable and washable fabric circuit

This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are threedimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance cha...

متن کامل

Three-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards

Viscoelastic properties of woven composite substrates are essential to design dimensionally stable multilayer printed circuit boards. Unlike most existing numerical work which rely on simplified constitutive (elastic) and geometrical models, this study involves a fully three-dimensional viscoelastic model of a plain weave composite with accurate characterization of the woven geometry. Compariso...

متن کامل

Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors

Stretchable electronics represent a new generation of electronics that utilize soft, deformable elastomers as the substrate or matrix instead of the traditional rigid printed circuit boards. As the most essential component of stretchable electronics, the conductors should meet the requirements for both high conductivity and the capability to maintain conductive under large deformations such as ...

متن کامل

Fast and Efficient Fabrication of Intrinsically Stretchable Multilayer Circuit Boards by Wax Pattern Assisted Filtration

Intrinsically stretchable multilayer circuit boards are fabricated with a fast and material efficient method based on filtration. Silver nanowire conductor patterns of outstanding performance are defined by filtration through wax printed membranes and the circuit board is assembled by subsequent transfers of the nanowires onto the elastomer substrate. The method is used to fabricate a bright st...

متن کامل

E-broidery: Design and fabrication of textile-based computing

Highly durable, flexible, and even washable multilayer electronic circuitry can be constructed on textile substrates, using conductive yarns and suitably packaged components. In this paper we describe the development of e-broidery (electronic embroidery, i.e., the patterning of conductive textiles by numerically controlled sewing or weaving processes) as a means of creating computationally acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Mathematical, physical, and engineering sciences

دوره 470 2171  شماره 

صفحات  -

تاریخ انتشار 2014